Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{x}9-t\mathrm{d}t
Calculate \sqrt{9-t} to the power of 2 and get 9-t.
\int 9-t\mathrm{d}t
Evaluate the indefinite integral first.
\int 9\mathrm{d}t+\int -t\mathrm{d}t
Integrate the sum term by term.
\int 9\mathrm{d}t-\int t\mathrm{d}t
Factor out the constant in each of the terms.
9t-\int t\mathrm{d}t
Find the integral of 9 using the table of common integrals rule \int a\mathrm{d}t=at.
9t-\frac{t^{2}}{2}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t\mathrm{d}t with \frac{t^{2}}{2}. Multiply -1 times \frac{t^{2}}{2}.
9x-\frac{x^{2}}{2}-\left(9\times 0-\frac{0^{2}}{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{x\left(18-x\right)}{2}
Simplify.