Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{a}0-x^{2}+9x\mathrm{d}x
To find the opposite of x^{2}-9x, find the opposite of each term.
\int _{0}^{a}-x^{2}+9x\mathrm{d}x
Anything plus zero gives itself.
\int -x^{2}+9x\mathrm{d}x
Evaluate the indefinite integral first.
\int -x^{2}\mathrm{d}x+\int 9x\mathrm{d}x
Integrate the sum term by term.
-\int x^{2}\mathrm{d}x+9\int x\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{x^{3}}{3}+9\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
-\frac{x^{3}}{3}+\frac{9x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 9 times \frac{x^{2}}{2}.
-\frac{a^{3}}{3}+\frac{9}{2}a^{2}-\left(-\frac{0^{3}}{3}+\frac{9}{2}\times 0^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{9a^{2}}{2}-\frac{a^{3}}{3}
Simplify.