Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{2}+5x+e^{x}\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{2}\mathrm{d}x+\int 5x\mathrm{d}x+\int e^{x}\mathrm{d}x
Integrate the sum term by term.
\int x^{2}\mathrm{d}x+5\int x\mathrm{d}x+\int e^{x}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{3}}{3}+5\int x\mathrm{d}x+\int e^{x}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{3}}{3}+\frac{5x^{2}}{2}+\int e^{x}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 5 times \frac{x^{2}}{2}.
\frac{x^{3}}{3}+\frac{5x^{2}}{2}+e^{x}
Use \int e^{x}\mathrm{d}x=e^{x} from the table of common integrals to obtain the result.
\frac{9^{3}}{3}+\frac{5}{2}\times 9^{2}+e^{9}-\left(\frac{0^{3}}{3}+\frac{5}{2}\times 0^{2}+e^{0}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{889}{2}+e^{9}
Simplify.