Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{9}\left(11\times \frac{20}{9}-y\times \frac{20}{9}\right)y\mathrm{d}y
Use the distributive property to multiply 11-y by \frac{20}{9}.
\int _{0}^{9}\left(\frac{11\times 20}{9}-y\times \frac{20}{9}\right)y\mathrm{d}y
Express 11\times \frac{20}{9} as a single fraction.
\int _{0}^{9}\left(\frac{220}{9}-y\times \frac{20}{9}\right)y\mathrm{d}y
Multiply 11 and 20 to get 220.
\int _{0}^{9}\left(\frac{220}{9}-\frac{20}{9}y\right)y\mathrm{d}y
Multiply -1 and \frac{20}{9} to get -\frac{20}{9}.
\int _{0}^{9}\frac{220}{9}y-\frac{20}{9}yy\mathrm{d}y
Use the distributive property to multiply \frac{220}{9}-\frac{20}{9}y by y.
\int _{0}^{9}\frac{220}{9}y-\frac{20}{9}y^{2}\mathrm{d}y
Multiply y and y to get y^{2}.
\int \frac{220y-20y^{2}}{9}\mathrm{d}y
Evaluate the indefinite integral first.
\int \frac{220y}{9}\mathrm{d}y+\int -\frac{20y^{2}}{9}\mathrm{d}y
Integrate the sum term by term.
\frac{220\int y\mathrm{d}y-20\int y^{2}\mathrm{d}y}{9}
Factor out the constant in each of the terms.
\frac{110y^{2}-20\int y^{2}\mathrm{d}y}{9}
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y\mathrm{d}y with \frac{y^{2}}{2}. Multiply \frac{220}{9} times \frac{y^{2}}{2}.
\frac{110y^{2}}{9}-\frac{20y^{3}}{27}
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y^{2}\mathrm{d}y with \frac{y^{3}}{3}. Multiply -\frac{20}{9} times \frac{y^{3}}{3}.
\frac{110}{9}\times 9^{2}-\frac{20}{27}\times 9^{3}-\left(\frac{110}{9}\times 0^{2}-\frac{20}{27}\times 0^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
450
Simplify.