Evaluate
450
Share
Copied to clipboard
\int _{0}^{9}\left(11\times \frac{20}{9}-y\times \frac{20}{9}\right)y\mathrm{d}y
Use the distributive property to multiply 11-y by \frac{20}{9}.
\int _{0}^{9}\left(\frac{11\times 20}{9}-y\times \frac{20}{9}\right)y\mathrm{d}y
Express 11\times \frac{20}{9} as a single fraction.
\int _{0}^{9}\left(\frac{220}{9}-y\times \frac{20}{9}\right)y\mathrm{d}y
Multiply 11 and 20 to get 220.
\int _{0}^{9}\left(\frac{220}{9}-\frac{20}{9}y\right)y\mathrm{d}y
Multiply -1 and \frac{20}{9} to get -\frac{20}{9}.
\int _{0}^{9}\frac{220}{9}y-\frac{20}{9}yy\mathrm{d}y
Use the distributive property to multiply \frac{220}{9}-\frac{20}{9}y by y.
\int _{0}^{9}\frac{220}{9}y-\frac{20}{9}y^{2}\mathrm{d}y
Multiply y and y to get y^{2}.
\int \frac{220y-20y^{2}}{9}\mathrm{d}y
Evaluate the indefinite integral first.
\int \frac{220y}{9}\mathrm{d}y+\int -\frac{20y^{2}}{9}\mathrm{d}y
Integrate the sum term by term.
\frac{220\int y\mathrm{d}y-20\int y^{2}\mathrm{d}y}{9}
Factor out the constant in each of the terms.
\frac{110y^{2}-20\int y^{2}\mathrm{d}y}{9}
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y\mathrm{d}y with \frac{y^{2}}{2}. Multiply \frac{220}{9} times \frac{y^{2}}{2}.
\frac{110y^{2}}{9}-\frac{20y^{3}}{27}
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y^{2}\mathrm{d}y with \frac{y^{3}}{3}. Multiply -\frac{20}{9} times \frac{y^{3}}{3}.
\frac{110}{9}\times 9^{2}-\frac{20}{27}\times 9^{3}-\left(\frac{110}{9}\times 0^{2}-\frac{20}{27}\times 0^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
450
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}