Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int u^{2}-4u\mathrm{d}u
Evaluate the indefinite integral first.
\int u^{2}\mathrm{d}u+\int -4u\mathrm{d}u
Integrate the sum term by term.
\int u^{2}\mathrm{d}u-4\int u\mathrm{d}u
Factor out the constant in each of the terms.
\frac{u^{3}}{3}-4\int u\mathrm{d}u
Since \int u^{k}\mathrm{d}u=\frac{u^{k+1}}{k+1} for k\neq -1, replace \int u^{2}\mathrm{d}u with \frac{u^{3}}{3}.
\frac{u^{3}}{3}-2u^{2}
Since \int u^{k}\mathrm{d}u=\frac{u^{k+1}}{k+1} for k\neq -1, replace \int u\mathrm{d}u with \frac{u^{2}}{2}. Multiply -4 times \frac{u^{2}}{2}.
\frac{7^{3}}{3}-2\times 7^{2}-\left(\frac{0^{3}}{3}-2\times 0^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{49}{3}
Simplify.