Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 2x-5-x^{2}+4x\mathrm{d}x
Evaluate the indefinite integral first.
\int 2x\mathrm{d}x+\int -5\mathrm{d}x+\int -x^{2}\mathrm{d}x+\int 4x\mathrm{d}x
Integrate the sum term by term.
2\int x\mathrm{d}x+\int -5\mathrm{d}x-\int x^{2}\mathrm{d}x+4\int x\mathrm{d}x
Factor out the constant in each of the terms.
x^{2}+\int -5\mathrm{d}x-\int x^{2}\mathrm{d}x+4\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 2 times \frac{x^{2}}{2}.
x^{2}-5x-\int x^{2}\mathrm{d}x+4\int x\mathrm{d}x
Find the integral of -5 using the table of common integrals rule \int a\mathrm{d}x=ax.
x^{2}-5x-\frac{x^{3}}{3}+4\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
x^{2}-5x-\frac{x^{3}}{3}+2x^{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 4 times \frac{x^{2}}{2}.
3x^{2}-5x-\frac{x^{3}}{3}
Simplify.
3\times 6^{2}-5\times 6-\frac{6^{3}}{3}-\left(3\times 0^{2}-5\times 0-\frac{0^{3}}{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
6
Simplify.