Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{6}0x^{2}-3x\mathrm{d}x
Multiply 0 and 5 to get 0.
\int _{0}^{6}0-3x\mathrm{d}x
Anything times zero gives zero.
\int _{0}^{6}-3x\mathrm{d}x
Anything plus zero gives itself.
\int -3x\mathrm{d}x
Evaluate the indefinite integral first.
-3\int x\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
-\frac{3x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
-\frac{3}{2}\times 6^{2}+\frac{3}{2}\times 0^{2}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-54
Simplify.