Evaluate
118098
Share
Copied to clipboard
\int _{0}^{6}\frac{3^{3}}{9^{-3}}\mathrm{d}x
Cancel out x in both numerator and denominator.
\int _{0}^{6}\frac{27}{9^{-3}}\mathrm{d}x
Calculate 3 to the power of 3 and get 27.
\int _{0}^{6}\frac{27}{\frac{1}{729}}\mathrm{d}x
Calculate 9 to the power of -3 and get \frac{1}{729}.
\int _{0}^{6}27\times 729\mathrm{d}x
Divide 27 by \frac{1}{729} by multiplying 27 by the reciprocal of \frac{1}{729}.
\int _{0}^{6}19683\mathrm{d}x
Multiply 27 and 729 to get 19683.
\int 19683\mathrm{d}x
Evaluate the indefinite integral first.
19683x
Find the integral of 19683 using the table of common integrals rule \int a\mathrm{d}x=ax.
19683\times 6-19683\times 0
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
118098
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}