Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{5}\left(x^{3}-3x^{2}\right)\left(x-5\right)\mathrm{d}x
Use the distributive property to multiply x^{2} by x-3.
\int _{0}^{5}x^{4}-8x^{3}+15x^{2}\mathrm{d}x
Use the distributive property to multiply x^{3}-3x^{2} by x-5 and combine like terms.
\int x^{4}-8x^{3}+15x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{4}\mathrm{d}x+\int -8x^{3}\mathrm{d}x+\int 15x^{2}\mathrm{d}x
Integrate the sum term by term.
\int x^{4}\mathrm{d}x-8\int x^{3}\mathrm{d}x+15\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{5}}{5}-8\int x^{3}\mathrm{d}x+15\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}.
\frac{x^{5}}{5}-2x^{4}+15\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -8 times \frac{x^{4}}{4}.
\frac{x^{5}}{5}-2x^{4}+5x^{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 15 times \frac{x^{3}}{3}.
\frac{5^{5}}{5}-2\times 5^{4}+5\times 5^{3}-\left(\frac{0^{5}}{5}-2\times 0^{4}+5\times 0^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
0
Simplify.