Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 56x^{2}-x^{4}\mathrm{d}x
Evaluate the indefinite integral first.
\int 56x^{2}\mathrm{d}x+\int -x^{4}\mathrm{d}x
Integrate the sum term by term.
56\int x^{2}\mathrm{d}x-\int x^{4}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{56x^{3}}{3}-\int x^{4}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 56 times \frac{x^{3}}{3}.
\frac{56x^{3}}{3}-\frac{x^{5}}{5}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}. Multiply -1 times \frac{x^{5}}{5}.
\frac{56}{3}\times 5^{3}-\frac{5^{5}}{5}-\left(\frac{56}{3}\times 0^{3}-\frac{0^{5}}{5}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{5125}{3}
Simplify.