Evaluate
\frac{654725}{4}=163681.25
Quiz
Integration
5 problems similar to:
\int _ { 0 } ^ { 5 } ( 57 n ^ { 5 } + 97 n ^ { 3 } + 7 n ) d n
Share
Copied to clipboard
\int 57n^{5}+97n^{3}+7n\mathrm{d}n
Evaluate the indefinite integral first.
\int 57n^{5}\mathrm{d}n+\int 97n^{3}\mathrm{d}n+\int 7n\mathrm{d}n
Integrate the sum term by term.
57\int n^{5}\mathrm{d}n+97\int n^{3}\mathrm{d}n+7\int n\mathrm{d}n
Factor out the constant in each of the terms.
\frac{19n^{6}}{2}+97\int n^{3}\mathrm{d}n+7\int n\mathrm{d}n
Since \int n^{k}\mathrm{d}n=\frac{n^{k+1}}{k+1} for k\neq -1, replace \int n^{5}\mathrm{d}n with \frac{n^{6}}{6}. Multiply 57 times \frac{n^{6}}{6}.
\frac{19n^{6}}{2}+\frac{97n^{4}}{4}+7\int n\mathrm{d}n
Since \int n^{k}\mathrm{d}n=\frac{n^{k+1}}{k+1} for k\neq -1, replace \int n^{3}\mathrm{d}n with \frac{n^{4}}{4}. Multiply 97 times \frac{n^{4}}{4}.
\frac{19n^{6}}{2}+\frac{97n^{4}}{4}+\frac{7n^{2}}{2}
Since \int n^{k}\mathrm{d}n=\frac{n^{k+1}}{k+1} for k\neq -1, replace \int n\mathrm{d}n with \frac{n^{2}}{2}. Multiply 7 times \frac{n^{2}}{2}.
\frac{19}{2}\times 5^{6}+\frac{97}{4}\times 5^{4}+\frac{7}{2}\times 5^{2}-\left(\frac{19}{2}\times 0^{6}+\frac{97}{4}\times 0^{4}+\frac{7}{2}\times 0^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{654725}{4}
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}