Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 57n^{5}+97n^{3}+7n\mathrm{d}n
Evaluate the indefinite integral first.
\int 57n^{5}\mathrm{d}n+\int 97n^{3}\mathrm{d}n+\int 7n\mathrm{d}n
Integrate the sum term by term.
57\int n^{5}\mathrm{d}n+97\int n^{3}\mathrm{d}n+7\int n\mathrm{d}n
Factor out the constant in each of the terms.
\frac{19n^{6}}{2}+97\int n^{3}\mathrm{d}n+7\int n\mathrm{d}n
Since \int n^{k}\mathrm{d}n=\frac{n^{k+1}}{k+1} for k\neq -1, replace \int n^{5}\mathrm{d}n with \frac{n^{6}}{6}. Multiply 57 times \frac{n^{6}}{6}.
\frac{19n^{6}}{2}+\frac{97n^{4}}{4}+7\int n\mathrm{d}n
Since \int n^{k}\mathrm{d}n=\frac{n^{k+1}}{k+1} for k\neq -1, replace \int n^{3}\mathrm{d}n with \frac{n^{4}}{4}. Multiply 97 times \frac{n^{4}}{4}.
\frac{19n^{6}}{2}+\frac{97n^{4}}{4}+\frac{7n^{2}}{2}
Since \int n^{k}\mathrm{d}n=\frac{n^{k+1}}{k+1} for k\neq -1, replace \int n\mathrm{d}n with \frac{n^{2}}{2}. Multiply 7 times \frac{n^{2}}{2}.
\frac{19}{2}\times 5^{6}+\frac{97}{4}\times 5^{4}+\frac{7}{2}\times 5^{2}-\left(\frac{19}{2}\times 0^{6}+\frac{97}{4}\times 0^{4}+\frac{7}{2}\times 0^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{654725}{4}
Simplify.