Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\int \sqrt{a}-\sqrt{x}\mathrm{d}x
Evaluate the indefinite integral first.
\int \sqrt{a}\mathrm{d}x+\int -\sqrt{x}\mathrm{d}x
Integrate the sum term by term.
\int \sqrt{a}\mathrm{d}x-\int \sqrt{x}\mathrm{d}x
Factor out the constant in each of the terms.
\sqrt{a}x-\int \sqrt{x}\mathrm{d}x
Find the integral of \sqrt{a} using the table of common integrals rule \int a\mathrm{d}x=ax.
\sqrt{a}x-\frac{2x^{\frac{3}{2}}}{3}
Rewrite \sqrt{x} as x^{\frac{1}{2}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{1}{2}}\mathrm{d}x with \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Simplify. Multiply -1 times \frac{2x^{\frac{3}{2}}}{3}.
a^{\frac{1}{2}}\times 5-\frac{2}{3}\times 5^{\frac{3}{2}}-\left(a^{\frac{1}{2}}\times 0-\frac{2}{3}\times 0^{\frac{3}{2}}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
5\sqrt{a}-\frac{10\sqrt{5}}{3}
Simplify.