Evaluate
20800
Share
Copied to clipboard
\int 88-\frac{x}{10}-\frac{3x^{2}}{10000}\mathrm{d}x
Evaluate the indefinite integral first.
\int 88\mathrm{d}x+\int -\frac{x}{10}\mathrm{d}x+\int -\frac{3x^{2}}{10000}\mathrm{d}x
Integrate the sum term by term.
\int 88\mathrm{d}x-\frac{\int x\mathrm{d}x}{10}-\frac{3\int x^{2}\mathrm{d}x}{10000}
Factor out the constant in each of the terms.
88x-\frac{\int x\mathrm{d}x}{10}-\frac{3\int x^{2}\mathrm{d}x}{10000}
Find the integral of 88 using the table of common integrals rule \int a\mathrm{d}x=ax.
88x-\frac{x^{2}}{20}-\frac{3\int x^{2}\mathrm{d}x}{10000}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -0.1 times \frac{x^{2}}{2}.
88x-\frac{x^{2}}{20}-\frac{x^{3}}{10000}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -0.0003 times \frac{x^{3}}{3}.
88\times 400-\frac{400^{2}}{20}-\frac{400^{3}}{10000}-\left(88\times 0-\frac{0^{2}}{20}-\frac{0^{3}}{10000}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
20800
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}