Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 88-\frac{x}{10}-\frac{3x^{2}}{10000}\mathrm{d}x
Evaluate the indefinite integral first.
\int 88\mathrm{d}x+\int -\frac{x}{10}\mathrm{d}x+\int -\frac{3x^{2}}{10000}\mathrm{d}x
Integrate the sum term by term.
\int 88\mathrm{d}x-\frac{\int x\mathrm{d}x}{10}-\frac{3\int x^{2}\mathrm{d}x}{10000}
Factor out the constant in each of the terms.
88x-\frac{\int x\mathrm{d}x}{10}-\frac{3\int x^{2}\mathrm{d}x}{10000}
Find the integral of 88 using the table of common integrals rule \int a\mathrm{d}x=ax.
88x-\frac{x^{2}}{20}-\frac{3\int x^{2}\mathrm{d}x}{10000}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -0.1 times \frac{x^{2}}{2}.
88x-\frac{x^{2}}{20}-\frac{x^{3}}{10000}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -0.0003 times \frac{x^{3}}{3}.
88\times 400-\frac{400^{2}}{20}-\frac{400^{3}}{10000}-\left(88\times 0-\frac{0^{2}}{20}-\frac{0^{3}}{10000}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
20800
Simplify.