Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{3}+x^{2}+x\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{3}\mathrm{d}x+\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
Integrate the sum term by term.
\frac{x^{4}}{4}+\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}.
\frac{x^{4}}{4}+\frac{x^{3}}{3}+\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{4}}{4}+\frac{x^{3}}{3}+\frac{x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{4^{4}}{4}+\frac{4^{3}}{3}+\frac{4^{2}}{2}-\left(\frac{0^{4}}{4}+\frac{0^{3}}{3}+\frac{0^{2}}{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{280}{3}
Simplify.