Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{4}6-\left(16-8\sqrt{x}+\left(\sqrt{x}\right)^{2}\right)\mathrm{d}x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-\sqrt{x}\right)^{2}.
\int _{0}^{4}6-\left(16-8\sqrt{x}+x\right)\mathrm{d}x
Calculate \sqrt{x} to the power of 2 and get x.
\int _{0}^{4}6-16+8\sqrt{x}-x\mathrm{d}x
To find the opposite of 16-8\sqrt{x}+x, find the opposite of each term.
\int _{0}^{4}-10+8\sqrt{x}-x\mathrm{d}x
Subtract 16 from 6 to get -10.
\int -10+8\sqrt{x}-x\mathrm{d}x
Evaluate the indefinite integral first.
\int -10\mathrm{d}x+\int 8\sqrt{x}\mathrm{d}x+\int -x\mathrm{d}x
Integrate the sum term by term.
\int -10\mathrm{d}x+8\int \sqrt{x}\mathrm{d}x-\int x\mathrm{d}x
Factor out the constant in each of the terms.
-10x+8\int \sqrt{x}\mathrm{d}x-\int x\mathrm{d}x
Find the integral of -10 using the table of common integrals rule \int a\mathrm{d}x=ax.
-10x+\frac{16x^{\frac{3}{2}}}{3}-\int x\mathrm{d}x
Rewrite \sqrt{x} as x^{\frac{1}{2}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{1}{2}}\mathrm{d}x with \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Simplify. Multiply 8 times \frac{2x^{\frac{3}{2}}}{3}.
-10x+\frac{16x^{\frac{3}{2}}}{3}-\frac{x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -1 times \frac{x^{2}}{2}.
-10x-\frac{x^{2}}{2}+\frac{16x^{\frac{3}{2}}}{3}
Simplify.
-10\times 4-\frac{4^{2}}{2}+\frac{16}{3}\times 4^{\frac{3}{2}}-\left(-10\times 0-\frac{0^{2}}{2}+\frac{16}{3}\times 0^{\frac{3}{2}}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{16}{3}
Simplify.