Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \sqrt{2t}\mathrm{d}t
Evaluate the indefinite integral first.
\sqrt{2}\int \sqrt{t}\mathrm{d}t
Factor out the constant using \int af\left(t\right)\mathrm{d}t=a\int f\left(t\right)\mathrm{d}t.
\sqrt{2}\times \frac{2t^{\frac{3}{2}}}{3}
Rewrite \sqrt{t} as t^{\frac{1}{2}}. Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{\frac{1}{2}}\mathrm{d}t with \frac{t^{\frac{3}{2}}}{\frac{3}{2}}. Simplify.
\frac{2\sqrt{2}t^{\frac{3}{2}}}{3}
Simplify.
\frac{2}{3}\times 2^{\frac{1}{2}}\times 4^{\frac{3}{2}}-\frac{2}{3}\times 2^{\frac{1}{2}}\times 0^{\frac{3}{2}}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{16\sqrt{2}}{3}
Simplify.