Evaluate
93
Share
Copied to clipboard
\int t^{2}-14t+49\mathrm{d}t
Evaluate the indefinite integral first.
\int t^{2}\mathrm{d}t+\int -14t\mathrm{d}t+\int 49\mathrm{d}t
Integrate the sum term by term.
\int t^{2}\mathrm{d}t-14\int t\mathrm{d}t+\int 49\mathrm{d}t
Factor out the constant in each of the terms.
\frac{t^{3}}{3}-14\int t\mathrm{d}t+\int 49\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{2}\mathrm{d}t with \frac{t^{3}}{3}.
\frac{t^{3}}{3}-7t^{2}+\int 49\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t\mathrm{d}t with \frac{t^{2}}{2}. Multiply -14 times \frac{t^{2}}{2}.
\frac{t^{3}}{3}-7t^{2}+49t
Find the integral of 49 using the table of common integrals rule \int a\mathrm{d}t=at.
\frac{3^{3}}{3}-7\times 3^{2}+49\times 3-\left(\frac{0^{3}}{3}-7\times 0^{2}+49\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
93
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}