Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 9-x^{2}-x^{2}-1\mathrm{d}x
Evaluate the indefinite integral first.
\int 9\mathrm{d}x+\int -x^{2}\mathrm{d}x+\int -x^{2}\mathrm{d}x+\int -1\mathrm{d}x
Integrate the sum term by term.
\int 9\mathrm{d}x-\int x^{2}\mathrm{d}x-\int x^{2}\mathrm{d}x+\int -1\mathrm{d}x
Factor out the constant in each of the terms.
9x-\int x^{2}\mathrm{d}x-\int x^{2}\mathrm{d}x+\int -1\mathrm{d}x
Find the integral of 9 using the table of common integrals rule \int a\mathrm{d}x=ax.
9x-\frac{x^{3}}{3}-\int x^{2}\mathrm{d}x+\int -1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
9x-\frac{x^{3}}{3}-\frac{x^{3}}{3}+\int -1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
9x-\frac{x^{3}}{3}-\frac{x^{3}}{3}-x
Find the integral of -1 using the table of common integrals rule \int a\mathrm{d}x=ax.
8x-\frac{2x^{3}}{3}
Simplify.
8\times 3-\frac{2}{3}\times 3^{3}-\left(8\times 0-\frac{2}{3}\times 0^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
6
Simplify.