Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 30.7+\frac{81t^{2}}{100}+\frac{243t^{4}}{2000}+\frac{243t^{6}}{20000}\mathrm{d}t
Evaluate the indefinite integral first.
\int 30.7\mathrm{d}t+\int \frac{81t^{2}}{100}\mathrm{d}t+\int \frac{243t^{4}}{2000}\mathrm{d}t+\int \frac{243t^{6}}{20000}\mathrm{d}t
Integrate the sum term by term.
\int 30.7\mathrm{d}t+\frac{81\int t^{2}\mathrm{d}t}{100}+\frac{243\int t^{4}\mathrm{d}t}{2000}+\frac{243\int t^{6}\mathrm{d}t}{20000}
Factor out the constant in each of the terms.
\frac{307t}{10}+\frac{81\int t^{2}\mathrm{d}t}{100}+\frac{243\int t^{4}\mathrm{d}t}{2000}+\frac{243\int t^{6}\mathrm{d}t}{20000}
Find the integral of 30.7 using the table of common integrals rule \int a\mathrm{d}t=at.
\frac{307t}{10}+\frac{27t^{3}}{100}+\frac{243\int t^{4}\mathrm{d}t}{2000}+\frac{243\int t^{6}\mathrm{d}t}{20000}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{2}\mathrm{d}t with \frac{t^{3}}{3}. Multiply 0.81 times \frac{t^{3}}{3}.
\frac{307t}{10}+\frac{27t^{3}}{100}+\frac{243t^{5}}{10000}+\frac{243\int t^{6}\mathrm{d}t}{20000}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{4}\mathrm{d}t with \frac{t^{5}}{5}. Multiply 0.1215 times \frac{t^{5}}{5}.
\frac{307t}{10}+\frac{27t^{3}}{100}+\frac{243t^{5}}{10000}+\frac{243t^{7}}{140000}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{6}\mathrm{d}t with \frac{t^{7}}{7}. Multiply 0.01215 times \frac{t^{7}}{7}.
30.7\times 3+\frac{27}{100}\times 3^{3}+\frac{243}{10000}\times 3^{5}+\frac{243}{140000}\times 3^{7}-\left(30.7\times 0+\frac{27}{100}\times 0^{3}+\frac{243}{10000}\times 0^{5}+\frac{243}{140000}\times 0^{7}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{15272727}{140000}
Simplify.