Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 124x^{5}-x^{2}+3\mathrm{d}x
Evaluate the indefinite integral first.
\int 124x^{5}\mathrm{d}x+\int -x^{2}\mathrm{d}x+\int 3\mathrm{d}x
Integrate the sum term by term.
124\int x^{5}\mathrm{d}x-\int x^{2}\mathrm{d}x+\int 3\mathrm{d}x
Factor out the constant in each of the terms.
\frac{62x^{6}}{3}-\int x^{2}\mathrm{d}x+\int 3\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{5}\mathrm{d}x with \frac{x^{6}}{6}. Multiply 124 times \frac{x^{6}}{6}.
\frac{62x^{6}}{3}-\frac{x^{3}}{3}+\int 3\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
\frac{62x^{6}}{3}-\frac{x^{3}}{3}+3x
Find the integral of 3 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{62}{3}\times 3^{6}-\frac{3^{3}}{3}+3\times 3-\left(\frac{62}{3}\times 0^{6}-\frac{0^{3}}{3}+3\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
15066
Simplify.