Evaluate
15066
Share
Copied to clipboard
\int 124x^{5}-x^{2}+3\mathrm{d}x
Evaluate the indefinite integral first.
\int 124x^{5}\mathrm{d}x+\int -x^{2}\mathrm{d}x+\int 3\mathrm{d}x
Integrate the sum term by term.
124\int x^{5}\mathrm{d}x-\int x^{2}\mathrm{d}x+\int 3\mathrm{d}x
Factor out the constant in each of the terms.
\frac{62x^{6}}{3}-\int x^{2}\mathrm{d}x+\int 3\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{5}\mathrm{d}x with \frac{x^{6}}{6}. Multiply 124 times \frac{x^{6}}{6}.
\frac{62x^{6}}{3}-\frac{x^{3}}{3}+\int 3\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
\frac{62x^{6}}{3}-\frac{x^{3}}{3}+3x
Find the integral of 3 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{62}{3}\times 3^{6}-\frac{3^{3}}{3}+3\times 3-\left(\frac{62}{3}\times 0^{6}-\frac{0^{3}}{3}+3\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
15066
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}