Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{3}x^{3}-9x^{2}+27x-27\mathrm{d}x
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-3\right)^{3}.
\int x^{3}-9x^{2}+27x-27\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{3}\mathrm{d}x+\int -9x^{2}\mathrm{d}x+\int 27x\mathrm{d}x+\int -27\mathrm{d}x
Integrate the sum term by term.
\int x^{3}\mathrm{d}x-9\int x^{2}\mathrm{d}x+27\int x\mathrm{d}x+\int -27\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{4}}{4}-9\int x^{2}\mathrm{d}x+27\int x\mathrm{d}x+\int -27\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}.
\frac{x^{4}}{4}-3x^{3}+27\int x\mathrm{d}x+\int -27\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -9 times \frac{x^{3}}{3}.
\frac{x^{4}}{4}-3x^{3}+\frac{27x^{2}}{2}+\int -27\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 27 times \frac{x^{2}}{2}.
\frac{x^{4}}{4}-3x^{3}+\frac{27x^{2}}{2}-27x
Find the integral of -27 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{3^{4}}{4}-3\times 3^{3}+\frac{27}{2}\times 3^{2}-27\times 3-\left(\frac{0^{4}}{4}-3\times 0^{3}+\frac{27}{2}\times 0^{2}-27\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{81}{4}
Simplify.