Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{3}\left(x^{3}\right)^{2}-8x^{3}x+16x^{2}\mathrm{d}x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{3}-4x\right)^{2}.
\int _{0}^{3}x^{6}-8x^{3}x+16x^{2}\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\int _{0}^{3}x^{6}-8x^{4}+16x^{2}\mathrm{d}x
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
\int x^{6}-8x^{4}+16x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{6}\mathrm{d}x+\int -8x^{4}\mathrm{d}x+\int 16x^{2}\mathrm{d}x
Integrate the sum term by term.
\int x^{6}\mathrm{d}x-8\int x^{4}\mathrm{d}x+16\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{7}}{7}-8\int x^{4}\mathrm{d}x+16\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{6}\mathrm{d}x with \frac{x^{7}}{7}.
\frac{x^{7}}{7}-\frac{8x^{5}}{5}+16\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}. Multiply -8 times \frac{x^{5}}{5}.
\frac{x^{7}}{7}-\frac{8x^{5}}{5}+\frac{16x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 16 times \frac{x^{3}}{3}.
\frac{16x^{3}}{3}-\frac{8x^{5}}{5}+\frac{x^{7}}{7}
Simplify.
\frac{16}{3}\times 3^{3}-\frac{8}{5}\times 3^{5}+\frac{3^{7}}{7}-\left(\frac{16}{3}\times 0^{3}-\frac{8}{5}\times 0^{5}+\frac{0^{7}}{7}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{2367}{35}
Simplify.