Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int t^{2}+3t-6\mathrm{d}t
Evaluate the indefinite integral first.
\int t^{2}\mathrm{d}t+\int 3t\mathrm{d}t+\int -6\mathrm{d}t
Integrate the sum term by term.
\int t^{2}\mathrm{d}t+3\int t\mathrm{d}t+\int -6\mathrm{d}t
Factor out the constant in each of the terms.
\frac{t^{3}}{3}+3\int t\mathrm{d}t+\int -6\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{2}\mathrm{d}t with \frac{t^{3}}{3}.
\frac{t^{3}}{3}+\frac{3t^{2}}{2}+\int -6\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t\mathrm{d}t with \frac{t^{2}}{2}. Multiply 3 times \frac{t^{2}}{2}.
\frac{t^{3}}{3}+\frac{3t^{2}}{2}-6t
Find the integral of -6 using the table of common integrals rule \int a\mathrm{d}t=at.
\frac{3^{3}}{3}+\frac{3}{2}\times 3^{2}-6\times 3-\left(\frac{0^{3}}{3}+\frac{3}{2}\times 0^{2}-6\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{9}{2}
Simplify.