Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{3}81-18x^{2}+\left(x^{2}\right)^{2}\mathrm{d}x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(9-x^{2}\right)^{2}.
\int _{0}^{3}81-18x^{2}+x^{4}\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\int 81-18x^{2}+x^{4}\mathrm{d}x
Evaluate the indefinite integral first.
\int 81\mathrm{d}x+\int -18x^{2}\mathrm{d}x+\int x^{4}\mathrm{d}x
Integrate the sum term by term.
\int 81\mathrm{d}x-18\int x^{2}\mathrm{d}x+\int x^{4}\mathrm{d}x
Factor out the constant in each of the terms.
81x-18\int x^{2}\mathrm{d}x+\int x^{4}\mathrm{d}x
Find the integral of 81 using the table of common integrals rule \int a\mathrm{d}x=ax.
81x-6x^{3}+\int x^{4}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -18 times \frac{x^{3}}{3}.
81x-6x^{3}+\frac{x^{5}}{5}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}.
\frac{3^{5}}{5}-6\times 3^{3}+81\times 3-\left(\frac{0^{5}}{5}-6\times 0^{3}+81\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{648}{5}
Simplify.