Evaluate
\frac{648}{5}=129.6
Share
Copied to clipboard
\int _{0}^{3}81-18x^{2}+\left(x^{2}\right)^{2}\mathrm{d}x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(9-x^{2}\right)^{2}.
\int _{0}^{3}81-18x^{2}+x^{4}\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\int 81-18x^{2}+x^{4}\mathrm{d}x
Evaluate the indefinite integral first.
\int 81\mathrm{d}x+\int -18x^{2}\mathrm{d}x+\int x^{4}\mathrm{d}x
Integrate the sum term by term.
\int 81\mathrm{d}x-18\int x^{2}\mathrm{d}x+\int x^{4}\mathrm{d}x
Factor out the constant in each of the terms.
81x-18\int x^{2}\mathrm{d}x+\int x^{4}\mathrm{d}x
Find the integral of 81 using the table of common integrals rule \int a\mathrm{d}x=ax.
81x-6x^{3}+\int x^{4}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -18 times \frac{x^{3}}{3}.
81x-6x^{3}+\frac{x^{5}}{5}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}.
\frac{3^{5}}{5}-6\times 3^{3}+81\times 3-\left(\frac{0^{5}}{5}-6\times 0^{3}+81\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{648}{5}
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}