Evaluate
3861
Share
Copied to clipboard
\int 75t^{4}+24t^{2}\mathrm{d}t
Evaluate the indefinite integral first.
\int 75t^{4}\mathrm{d}t+\int 24t^{2}\mathrm{d}t
Integrate the sum term by term.
75\int t^{4}\mathrm{d}t+24\int t^{2}\mathrm{d}t
Factor out the constant in each of the terms.
15t^{5}+24\int t^{2}\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{4}\mathrm{d}t with \frac{t^{5}}{5}. Multiply 75 times \frac{t^{5}}{5}.
15t^{5}+8t^{3}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{2}\mathrm{d}t with \frac{t^{3}}{3}. Multiply 24 times \frac{t^{3}}{3}.
15\times 3^{5}+8\times 3^{3}-\left(15\times 0^{5}+8\times 0^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
3861
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}