Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{3}25x^{2}-30x+9\mathrm{d}x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5x-3\right)^{2}.
\int 25x^{2}-30x+9\mathrm{d}x
Evaluate the indefinite integral first.
\int 25x^{2}\mathrm{d}x+\int -30x\mathrm{d}x+\int 9\mathrm{d}x
Integrate the sum term by term.
25\int x^{2}\mathrm{d}x-30\int x\mathrm{d}x+\int 9\mathrm{d}x
Factor out the constant in each of the terms.
\frac{25x^{3}}{3}-30\int x\mathrm{d}x+\int 9\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 25 times \frac{x^{3}}{3}.
\frac{25x^{3}}{3}-15x^{2}+\int 9\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -30 times \frac{x^{2}}{2}.
\frac{25x^{3}}{3}-15x^{2}+9x
Find the integral of 9 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{25}{3}\times 3^{3}-15\times 3^{2}+9\times 3-\left(\frac{25}{3}\times 0^{3}-15\times 0^{2}+9\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
117
Simplify.