Evaluate
\frac{281961}{35}\approx 8056.028571429
Share
Copied to clipboard
\int 36t^{3}+36t^{6}+24t^{2}-84t^{4}-12t\mathrm{d}t
Evaluate the indefinite integral first.
\int 36t^{3}\mathrm{d}t+\int 36t^{6}\mathrm{d}t+\int 24t^{2}\mathrm{d}t+\int -84t^{4}\mathrm{d}t+\int -12t\mathrm{d}t
Integrate the sum term by term.
36\int t^{3}\mathrm{d}t+36\int t^{6}\mathrm{d}t+24\int t^{2}\mathrm{d}t-84\int t^{4}\mathrm{d}t-12\int t\mathrm{d}t
Factor out the constant in each of the terms.
9t^{4}+36\int t^{6}\mathrm{d}t+24\int t^{2}\mathrm{d}t-84\int t^{4}\mathrm{d}t-12\int t\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{3}\mathrm{d}t with \frac{t^{4}}{4}. Multiply 36 times \frac{t^{4}}{4}.
9t^{4}+\frac{36t^{7}}{7}+24\int t^{2}\mathrm{d}t-84\int t^{4}\mathrm{d}t-12\int t\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{6}\mathrm{d}t with \frac{t^{7}}{7}. Multiply 36 times \frac{t^{7}}{7}.
9t^{4}+\frac{36t^{7}}{7}+8t^{3}-84\int t^{4}\mathrm{d}t-12\int t\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{2}\mathrm{d}t with \frac{t^{3}}{3}. Multiply 24 times \frac{t^{3}}{3}.
9t^{4}+\frac{36t^{7}}{7}+8t^{3}-\frac{84t^{5}}{5}-12\int t\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{4}\mathrm{d}t with \frac{t^{5}}{5}. Multiply -84 times \frac{t^{5}}{5}.
9t^{4}+\frac{36t^{7}}{7}+8t^{3}-\frac{84t^{5}}{5}-6t^{2}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t\mathrm{d}t with \frac{t^{2}}{2}. Multiply -12 times \frac{t^{2}}{2}.
9\times 3^{4}+\frac{36}{7}\times 3^{7}+8\times 3^{3}-\frac{84}{5}\times 3^{5}-6\times 3^{2}-\left(9\times 0^{4}+\frac{36}{7}\times 0^{7}+8\times 0^{3}-\frac{84}{5}\times 0^{5}-6\times 0^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{281961}{35}
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}