Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 3x^{2}+6+\cos(x)\mathrm{d}x
Evaluate the indefinite integral first.
\int 3x^{2}\mathrm{d}x+\int 6\mathrm{d}x+\int \cos(x)\mathrm{d}x
Integrate the sum term by term.
3\int x^{2}\mathrm{d}x+\int 6\mathrm{d}x+\int \cos(x)\mathrm{d}x
Factor out the constant in each of the terms.
x^{3}+\int 6\mathrm{d}x+\int \cos(x)\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 3 times \frac{x^{3}}{3}.
x^{3}+6x+\int \cos(x)\mathrm{d}x
Find the integral of 6 using the table of common integrals rule \int a\mathrm{d}x=ax.
x^{3}+6x+\sin(x)
Use \int \cos(x)\mathrm{d}x=\sin(x) from the table of common integrals to obtain the result.
3^{3}+3\times 6+\sin(3)-\left(0^{3}+0\times 6+\sin(0)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
45+\sin(3)
Simplify.