Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 3t^{2}-8t-3\mathrm{d}t
Evaluate the indefinite integral first.
\int 3t^{2}\mathrm{d}t+\int -8t\mathrm{d}t+\int -3\mathrm{d}t
Integrate the sum term by term.
3\int t^{2}\mathrm{d}t-8\int t\mathrm{d}t+\int -3\mathrm{d}t
Factor out the constant in each of the terms.
t^{3}-8\int t\mathrm{d}t+\int -3\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{2}\mathrm{d}t with \frac{t^{3}}{3}. Multiply 3 times \frac{t^{3}}{3}.
t^{3}-4t^{2}+\int -3\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t\mathrm{d}t with \frac{t^{2}}{2}. Multiply -8 times \frac{t^{2}}{2}.
t^{3}-4t^{2}-3t
Find the integral of -3 using the table of common integrals rule \int a\mathrm{d}t=at.
3^{3}-4\times 3^{2}-3\times 3-\left(0^{3}-4\times 0^{2}-3\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-18
Simplify.