Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 12x^{11}-90x^{9}+4x+2\mathrm{d}x
Evaluate the indefinite integral first.
\int 12x^{11}\mathrm{d}x+\int -90x^{9}\mathrm{d}x+\int 4x\mathrm{d}x+\int 2\mathrm{d}x
Integrate the sum term by term.
12\int x^{11}\mathrm{d}x-90\int x^{9}\mathrm{d}x+4\int x\mathrm{d}x+\int 2\mathrm{d}x
Factor out the constant in each of the terms.
x^{12}-90\int x^{9}\mathrm{d}x+4\int x\mathrm{d}x+\int 2\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{11}\mathrm{d}x with \frac{x^{12}}{12}. Multiply 12 times \frac{x^{12}}{12}.
x^{12}-9x^{10}+4\int x\mathrm{d}x+\int 2\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{9}\mathrm{d}x with \frac{x^{10}}{10}. Multiply -90 times \frac{x^{10}}{10}.
x^{12}-9x^{10}+2x^{2}+\int 2\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 4 times \frac{x^{2}}{2}.
x^{12}-9x^{10}+2x^{2}+2x
Find the integral of 2 using the table of common integrals rule \int a\mathrm{d}x=ax.
3^{12}-9\times 3^{10}+2\times 3^{2}+2\times 3-\left(0^{12}-9\times 0^{10}+2\times 0^{2}+2\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
24
Simplify.