Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{4t^{3}}{3}-\frac{3t^{2}}{2}+\frac{2t}{3}\mathrm{d}t
Evaluate the indefinite integral first.
\int \frac{4t^{3}}{3}\mathrm{d}t+\int -\frac{3t^{2}}{2}\mathrm{d}t+\int \frac{2t}{3}\mathrm{d}t
Integrate the sum term by term.
\frac{4\int t^{3}\mathrm{d}t}{3}-\frac{3\int t^{2}\mathrm{d}t}{2}+\frac{2\int t\mathrm{d}t}{3}
Factor out the constant in each of the terms.
\frac{t^{4}}{3}-\frac{3\int t^{2}\mathrm{d}t}{2}+\frac{2\int t\mathrm{d}t}{3}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{3}\mathrm{d}t with \frac{t^{4}}{4}. Multiply \frac{4}{3} times \frac{t^{4}}{4}.
\frac{t^{4}}{3}-\frac{t^{3}}{2}+\frac{2\int t\mathrm{d}t}{3}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{2}\mathrm{d}t with \frac{t^{3}}{3}. Multiply -\frac{3}{2} times \frac{t^{3}}{3}.
\frac{t^{4}}{3}-\frac{t^{3}}{2}+\frac{t^{2}}{3}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t\mathrm{d}t with \frac{t^{2}}{2}. Multiply \frac{2}{3} times \frac{t^{2}}{2}.
\frac{3^{4}}{3}-\frac{3^{3}}{2}+\frac{3^{2}}{3}-\left(\frac{0^{4}}{3}-\frac{0^{3}}{2}+\frac{0^{2}}{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{33}{2}
Simplify.