Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{x^{2}+2}{3}\mathrm{d}x
Evaluate the indefinite integral first.
\int \frac{x^{2}}{3}\mathrm{d}x+\int \frac{2}{3}\mathrm{d}x
Integrate the sum term by term.
\frac{\int x^{2}\mathrm{d}x}{3}+\int \frac{2}{3}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{3}}{9}+\int \frac{2}{3}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply \frac{1}{3} times \frac{x^{3}}{3}.
\frac{x^{3}}{9}+\frac{2x}{3}
Find the integral of \frac{2}{3} using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{3^{3}}{9}+\frac{2}{3}\times 3-\left(\frac{0^{3}}{9}+\frac{2}{3}\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
5
Simplify.