Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{3}x+2-\left(x^{2}+2x\right)\left(x+4\right)\mathrm{d}x
Use the distributive property to multiply x by x+2.
\int _{0}^{3}x+2-\left(x^{3}+4x^{2}+2x^{2}+8x\right)\mathrm{d}x
Apply the distributive property by multiplying each term of x^{2}+2x by each term of x+4.
\int _{0}^{3}x+2-\left(x^{3}+6x^{2}+8x\right)\mathrm{d}x
Combine 4x^{2} and 2x^{2} to get 6x^{2}.
\int _{0}^{3}x+2-x^{3}-6x^{2}-8x\mathrm{d}x
To find the opposite of x^{3}+6x^{2}+8x, find the opposite of each term.
\int _{0}^{3}-7x+2-x^{3}-6x^{2}\mathrm{d}x
Combine x and -8x to get -7x.
\int -7x+2-x^{3}-6x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int -7x\mathrm{d}x+\int 2\mathrm{d}x+\int -x^{3}\mathrm{d}x+\int -6x^{2}\mathrm{d}x
Integrate the sum term by term.
-7\int x\mathrm{d}x+\int 2\mathrm{d}x-\int x^{3}\mathrm{d}x-6\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{7x^{2}}{2}+\int 2\mathrm{d}x-\int x^{3}\mathrm{d}x-6\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -7 times \frac{x^{2}}{2}.
-\frac{7x^{2}}{2}+2x-\int x^{3}\mathrm{d}x-6\int x^{2}\mathrm{d}x
Find the integral of 2 using the table of common integrals rule \int a\mathrm{d}x=ax.
-\frac{7x^{2}}{2}+2x-\frac{x^{4}}{4}-6\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -1 times \frac{x^{4}}{4}.
-\frac{7x^{2}}{2}+2x-\frac{x^{4}}{4}-2x^{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -6 times \frac{x^{3}}{3}.
-\frac{7}{2}\times 3^{2}+2\times 3-\frac{3^{4}}{4}-2\times 3^{3}-\left(-\frac{7}{2}\times 0^{2}+2\times 0-\frac{0^{4}}{4}-2\times 0^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{399}{4}
Simplify.