Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{2}2x+x^{6}\mathrm{d}x
Use the distributive property to multiply x by 2+x^{5}.
\int 2x+x^{6}\mathrm{d}x
Evaluate the indefinite integral first.
\int 2x\mathrm{d}x+\int x^{6}\mathrm{d}x
Integrate the sum term by term.
2\int x\mathrm{d}x+\int x^{6}\mathrm{d}x
Factor out the constant in each of the terms.
x^{2}+\int x^{6}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 2 times \frac{x^{2}}{2}.
x^{2}+\frac{x^{7}}{7}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{6}\mathrm{d}x with \frac{x^{7}}{7}.
2^{2}+\frac{2^{7}}{7}-\left(0^{2}+\frac{0^{7}}{7}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{156}{7}
Simplify.