Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{6}-x^{3}\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{6}\mathrm{d}x+\int -x^{3}\mathrm{d}x
Integrate the sum term by term.
\int x^{6}\mathrm{d}x-\int x^{3}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{7}}{7}-\int x^{3}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{6}\mathrm{d}x with \frac{x^{7}}{7}.
\frac{x^{7}}{7}-\frac{x^{4}}{4}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -1 times \frac{x^{4}}{4}.
\frac{2^{7}}{7}-\frac{2^{4}}{4}-\left(\frac{0^{7}}{7}-\frac{0^{4}}{4}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{100}{7}
Simplify.