Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{2}+5+x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{2}\mathrm{d}x+\int 5\mathrm{d}x+\int x^{2}\mathrm{d}x
Integrate the sum term by term.
\frac{x^{3}}{3}+\int 5\mathrm{d}x+\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{3}}{3}+5x+\int x^{2}\mathrm{d}x
Find the integral of 5 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{x^{3}}{3}+5x+\frac{x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{2x^{3}}{3}+5x
Simplify.
\frac{2}{3}\times 2^{3}+5\times 2-\left(\frac{2}{3}\times 0^{3}+5\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{46}{3}
Simplify.