Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{2}4t^{2}exp\times 2\mathrm{d}t
Multiply t and t to get t^{2}.
\int _{0}^{2}8t^{2}exp\mathrm{d}t
Multiply 4 and 2 to get 8.
\int 8t^{2}exp\mathrm{d}t
Evaluate the indefinite integral first.
8exp\int t^{2}\mathrm{d}t
Factor out the constant using \int af\left(t\right)\mathrm{d}t=a\int f\left(t\right)\mathrm{d}t.
8exp\times \frac{t^{3}}{3}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{2}\mathrm{d}t with \frac{t^{3}}{3}.
\frac{8expt^{3}}{3}
Simplify.
\frac{8}{3}exp\times 2^{3}-\frac{8}{3}exp\times 0^{3}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{64exp}{3}
Simplify.