Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{2}\left(3x+3\right)\left(x+6\right)\mathrm{d}x
Use the distributive property to multiply 3 by x+1.
\int _{0}^{2}3x^{2}+18x+3x+18\mathrm{d}x
Apply the distributive property by multiplying each term of 3x+3 by each term of x+6.
\int _{0}^{2}3x^{2}+21x+18\mathrm{d}x
Combine 18x and 3x to get 21x.
\int 3x^{2}+21x+18\mathrm{d}x
Evaluate the indefinite integral first.
\int 3x^{2}\mathrm{d}x+\int 21x\mathrm{d}x+\int 18\mathrm{d}x
Integrate the sum term by term.
3\int x^{2}\mathrm{d}x+21\int x\mathrm{d}x+\int 18\mathrm{d}x
Factor out the constant in each of the terms.
x^{3}+21\int x\mathrm{d}x+\int 18\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 3 times \frac{x^{3}}{3}.
x^{3}+\frac{21x^{2}}{2}+\int 18\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 21 times \frac{x^{2}}{2}.
x^{3}+\frac{21x^{2}}{2}+18x
Find the integral of 18 using the table of common integrals rule \int a\mathrm{d}x=ax.
2^{3}+\frac{21}{2}\times 2^{2}+18\times 2-\left(0^{3}+\frac{21}{2}\times 0^{2}+18\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
86
Simplify.