Evaluate
86
Share
Copied to clipboard
\int _{0}^{2}\left(3x+3\right)\left(x+6\right)\mathrm{d}x
Use the distributive property to multiply 3 by x+1.
\int _{0}^{2}3x^{2}+18x+3x+18\mathrm{d}x
Apply the distributive property by multiplying each term of 3x+3 by each term of x+6.
\int _{0}^{2}3x^{2}+21x+18\mathrm{d}x
Combine 18x and 3x to get 21x.
\int 3x^{2}+21x+18\mathrm{d}x
Evaluate the indefinite integral first.
\int 3x^{2}\mathrm{d}x+\int 21x\mathrm{d}x+\int 18\mathrm{d}x
Integrate the sum term by term.
3\int x^{2}\mathrm{d}x+21\int x\mathrm{d}x+\int 18\mathrm{d}x
Factor out the constant in each of the terms.
x^{3}+21\int x\mathrm{d}x+\int 18\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 3 times \frac{x^{3}}{3}.
x^{3}+\frac{21x^{2}}{2}+\int 18\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 21 times \frac{x^{2}}{2}.
x^{3}+\frac{21x^{2}}{2}+18x
Find the integral of 18 using the table of common integrals rule \int a\mathrm{d}x=ax.
2^{3}+\frac{21}{2}\times 2^{2}+18\times 2-\left(0^{3}+\frac{21}{2}\times 0^{2}+18\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
86
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}