Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int y^{4}-y^{2}-4y+4\mathrm{d}y
Evaluate the indefinite integral first.
\int y^{4}\mathrm{d}y+\int -y^{2}\mathrm{d}y+\int -4y\mathrm{d}y+\int 4\mathrm{d}y
Integrate the sum term by term.
\int y^{4}\mathrm{d}y-\int y^{2}\mathrm{d}y-4\int y\mathrm{d}y+\int 4\mathrm{d}y
Factor out the constant in each of the terms.
\frac{y^{5}}{5}-\int y^{2}\mathrm{d}y-4\int y\mathrm{d}y+\int 4\mathrm{d}y
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y^{4}\mathrm{d}y with \frac{y^{5}}{5}.
\frac{y^{5}}{5}-\frac{y^{3}}{3}-4\int y\mathrm{d}y+\int 4\mathrm{d}y
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y^{2}\mathrm{d}y with \frac{y^{3}}{3}. Multiply -1 times \frac{y^{3}}{3}.
\frac{y^{5}}{5}-\frac{y^{3}}{3}-2y^{2}+\int 4\mathrm{d}y
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y\mathrm{d}y with \frac{y^{2}}{2}. Multiply -4 times \frac{y^{2}}{2}.
\frac{y^{5}}{5}-\frac{y^{3}}{3}-2y^{2}+4y
Find the integral of 4 using the table of common integrals rule \int a\mathrm{d}y=ay.
\frac{2^{5}}{5}-\frac{2^{3}}{3}-2\times 2^{2}+4\times 2-\left(\frac{0^{5}}{5}-\frac{0^{3}}{3}-2\times 0^{2}+4\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{56}{15}
Simplify.