Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x-\sqrt[3]{x}\mathrm{d}x
Evaluate the indefinite integral first.
\int x\mathrm{d}x+\int -\sqrt[3]{x}\mathrm{d}x
Integrate the sum term by term.
\int x\mathrm{d}x-\int \sqrt[3]{x}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{2}}{2}-\int \sqrt[3]{x}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{x^{2}}{2}-\frac{3x^{\frac{4}{3}}}{4}
Rewrite \sqrt[3]{x} as x^{\frac{1}{3}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{1}{3}}\mathrm{d}x with \frac{x^{\frac{4}{3}}}{\frac{4}{3}}. Simplify. Multiply -1 times \frac{3x^{\frac{4}{3}}}{4}.
\frac{2^{2}}{2}-\frac{3}{4}\times 2^{\frac{4}{3}}-\left(\frac{0^{2}}{2}-\frac{3}{4}\times 0^{\frac{4}{3}}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
2-\frac{3\sqrt[3]{2}}{2}
Simplify.