Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 60-\frac{t}{2}\mathrm{d}t
Evaluate the indefinite integral first.
\int 60\mathrm{d}t+\int -\frac{t}{2}\mathrm{d}t
Integrate the sum term by term.
\int 60\mathrm{d}t-\frac{\int t\mathrm{d}t}{2}
Factor out the constant in each of the terms.
60t-\frac{\int t\mathrm{d}t}{2}
Find the integral of 60 using the table of common integrals rule \int a\mathrm{d}t=at.
60t-\frac{t^{2}}{4}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t\mathrm{d}t with \frac{t^{2}}{2}. Multiply -\frac{1}{2} times \frac{t^{2}}{2}.
60\times 2-\frac{2^{2}}{4}-\left(60\times 0-\frac{0^{2}}{4}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
119
Simplify.