Evaluate
119
Share
Copied to clipboard
\int 60-\frac{t}{2}\mathrm{d}t
Evaluate the indefinite integral first.
\int 60\mathrm{d}t+\int -\frac{t}{2}\mathrm{d}t
Integrate the sum term by term.
\int 60\mathrm{d}t-\frac{\int t\mathrm{d}t}{2}
Factor out the constant in each of the terms.
60t-\frac{\int t\mathrm{d}t}{2}
Find the integral of 60 using the table of common integrals rule \int a\mathrm{d}t=at.
60t-\frac{t^{2}}{4}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t\mathrm{d}t with \frac{t^{2}}{2}. Multiply -\frac{1}{2} times \frac{t^{2}}{2}.
60\times 2-\frac{2^{2}}{4}-\left(60\times 0-\frac{0^{2}}{4}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
119
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}