Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 6x^{2}-3x+12\mathrm{d}x
Evaluate the indefinite integral first.
\int 6x^{2}\mathrm{d}x+\int -3x\mathrm{d}x+\int 12\mathrm{d}x
Integrate the sum term by term.
6\int x^{2}\mathrm{d}x-3\int x\mathrm{d}x+\int 12\mathrm{d}x
Factor out the constant in each of the terms.
2x^{3}-3\int x\mathrm{d}x+\int 12\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 6 times \frac{x^{3}}{3}.
2x^{3}-\frac{3x^{2}}{2}+\int 12\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -3 times \frac{x^{2}}{2}.
2x^{3}-\frac{3x^{2}}{2}+12x
Find the integral of 12 using the table of common integrals rule \int a\mathrm{d}x=ax.
2\times 2^{3}-\frac{3}{2}\times 2^{2}+12\times 2-\left(2\times 0^{3}-\frac{3}{2}\times 0^{2}+12\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
34
Simplify.