Evaluate
34
Share
Copied to clipboard
\int 6x^{2}-3x+12\mathrm{d}x
Evaluate the indefinite integral first.
\int 6x^{2}\mathrm{d}x+\int -3x\mathrm{d}x+\int 12\mathrm{d}x
Integrate the sum term by term.
6\int x^{2}\mathrm{d}x-3\int x\mathrm{d}x+\int 12\mathrm{d}x
Factor out the constant in each of the terms.
2x^{3}-3\int x\mathrm{d}x+\int 12\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 6 times \frac{x^{3}}{3}.
2x^{3}-\frac{3x^{2}}{2}+\int 12\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -3 times \frac{x^{2}}{2}.
2x^{3}-\frac{3x^{2}}{2}+12x
Find the integral of 12 using the table of common integrals rule \int a\mathrm{d}x=ax.
2\times 2^{3}-\frac{3}{2}\times 2^{2}+12\times 2-\left(2\times 0^{3}-\frac{3}{2}\times 0^{2}+12\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
34
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}