Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{2}5438x^{2}\times \frac{18}{25}\mathrm{d}x
Multiply x and x to get x^{2}.
\int _{0}^{2}\frac{5438\times 18}{25}x^{2}\mathrm{d}x
Express 5438\times \frac{18}{25} as a single fraction.
\int _{0}^{2}\frac{97884}{25}x^{2}\mathrm{d}x
Multiply 5438 and 18 to get 97884.
\int \frac{97884x^{2}}{25}\mathrm{d}x
Evaluate the indefinite integral first.
\frac{97884\int x^{2}\mathrm{d}x}{25}
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{32628x^{3}}{25}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{32628}{25}\times 2^{3}-\frac{32628}{25}\times 0^{3}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{261024}{25}
Simplify.