Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{2}54.38x^{2}\times \frac{18}{25}\mathrm{d}x
Multiply x and x to get x^{2}.
\int _{0}^{2}\frac{2719}{50}x^{2}\times \frac{18}{25}\mathrm{d}x
Convert decimal number 54.38 to fraction \frac{5438}{100}. Reduce the fraction \frac{5438}{100} to lowest terms by extracting and canceling out 2.
\int _{0}^{2}\frac{2719\times 18}{50\times 25}x^{2}\mathrm{d}x
Multiply \frac{2719}{50} times \frac{18}{25} by multiplying numerator times numerator and denominator times denominator.
\int _{0}^{2}\frac{48942}{1250}x^{2}\mathrm{d}x
Do the multiplications in the fraction \frac{2719\times 18}{50\times 25}.
\int _{0}^{2}\frac{24471}{625}x^{2}\mathrm{d}x
Reduce the fraction \frac{48942}{1250} to lowest terms by extracting and canceling out 2.
\int \frac{24471x^{2}}{625}\mathrm{d}x
Evaluate the indefinite integral first.
\frac{24471\int x^{2}\mathrm{d}x}{625}
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{8157x^{3}}{625}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{8157}{625}\times 2^{3}-\frac{8157}{625}\times 0^{3}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{65256}{625}
Simplify.