Evaluate
75
Share
Copied to clipboard
\int 30+10t-\frac{5t}{2}\mathrm{d}t
Evaluate the indefinite integral first.
\int 30\mathrm{d}t+\int 10t\mathrm{d}t+\int -\frac{5t}{2}\mathrm{d}t
Integrate the sum term by term.
\int 30\mathrm{d}t+10\int t\mathrm{d}t-\frac{5\int t\mathrm{d}t}{2}
Factor out the constant in each of the terms.
30t+10\int t\mathrm{d}t-\frac{5\int t\mathrm{d}t}{2}
Find the integral of 30 using the table of common integrals rule \int a\mathrm{d}t=at.
30t+5t^{2}-\frac{5\int t\mathrm{d}t}{2}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t\mathrm{d}t with \frac{t^{2}}{2}. Multiply 10 times \frac{t^{2}}{2}.
30t+5t^{2}-\frac{5t^{2}}{4}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t\mathrm{d}t with \frac{t^{2}}{2}. Multiply -\frac{5}{2} times \frac{t^{2}}{2}.
30t+\frac{15t^{2}}{4}
Simplify.
30\times 2+\frac{15}{4}\times 2^{2}-\left(30\times 0+\frac{15}{4}\times 0^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
75
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}