Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 30+10t-\frac{5t}{2}\mathrm{d}t
Evaluate the indefinite integral first.
\int 30\mathrm{d}t+\int 10t\mathrm{d}t+\int -\frac{5t}{2}\mathrm{d}t
Integrate the sum term by term.
\int 30\mathrm{d}t+10\int t\mathrm{d}t-\frac{5\int t\mathrm{d}t}{2}
Factor out the constant in each of the terms.
30t+10\int t\mathrm{d}t-\frac{5\int t\mathrm{d}t}{2}
Find the integral of 30 using the table of common integrals rule \int a\mathrm{d}t=at.
30t+5t^{2}-\frac{5\int t\mathrm{d}t}{2}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t\mathrm{d}t with \frac{t^{2}}{2}. Multiply 10 times \frac{t^{2}}{2}.
30t+5t^{2}-\frac{5t^{2}}{4}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t\mathrm{d}t with \frac{t^{2}}{2}. Multiply -\frac{5}{2} times \frac{t^{2}}{2}.
30t+\frac{15t^{2}}{4}
Simplify.
30\times 2+\frac{15}{4}\times 2^{2}-\left(30\times 0+\frac{15}{4}\times 0^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
75
Simplify.