Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{x^{4}}{3}+\frac{3x^{4}}{5}\mathrm{d}x
Evaluate the indefinite integral first.
\int \frac{x^{4}}{3}\mathrm{d}x+\int \frac{3x^{4}}{5}\mathrm{d}x
Integrate the sum term by term.
\frac{\int x^{4}\mathrm{d}x}{3}+\frac{3\int x^{4}\mathrm{d}x}{5}
Factor out the constant in each of the terms.
\frac{x^{5}}{15}+\frac{3\int x^{4}\mathrm{d}x}{5}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}. Multiply \frac{1}{3} times \frac{x^{5}}{5}.
\frac{x^{5}}{15}+\frac{3x^{5}}{25}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}. Multiply \frac{3}{5} times \frac{x^{5}}{5}.
\frac{14x^{5}}{75}
Simplify.
\frac{14}{75}\times 2^{5}-\frac{14}{75}\times 0^{5}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{448}{75}
Simplify.