Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \sqrt{\frac{x}{2}}\mathrm{d}x
Evaluate the indefinite integral first.
\frac{\sqrt{2}\int \sqrt{x}\mathrm{d}x}{2}
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{\sqrt{2}\times \frac{2x^{\frac{3}{2}}}{3}}{2}
Rewrite \sqrt{x} as x^{\frac{1}{2}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{1}{2}}\mathrm{d}x with \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Simplify.
\frac{\sqrt{2}x^{\frac{3}{2}}}{3}
Simplify.
\frac{1}{3}\times 2^{\frac{1}{2}}\times 2^{\frac{3}{2}}-\frac{1}{3}\times 2^{\frac{1}{2}}\times 0^{\frac{3}{2}}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{4}{3}
Simplify.