Evaluate
1.9178485493262772
Share
Copied to clipboard
\int_{0}^{2} {0.9589242746631386} dx
Evaluate trigonometric functions in the problem
\int 0.9589242746631386\mathrm{d}x
Evaluate the indefinite integral first.
\frac{4794621373315693x}{5000000000000000}
Find the integral of 0.9589242746631386 using the table of common integrals rule \int a\mathrm{d}x=ax.
0.9589242746631386\times 2-0.9589242746631386\times 0
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
1.9178485493262772
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}