Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{2x^{2}}{3}-\frac{5x^{3}}{4}\mathrm{d}x
Evaluate the indefinite integral first.
\int \frac{2x^{2}}{3}\mathrm{d}x+\int -\frac{5x^{3}}{4}\mathrm{d}x
Integrate the sum term by term.
\frac{2\int x^{2}\mathrm{d}x}{3}-\frac{5\int x^{3}\mathrm{d}x}{4}
Factor out the constant in each of the terms.
\frac{2x^{3}}{9}-\frac{5\int x^{3}\mathrm{d}x}{4}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply \frac{2}{3} times \frac{x^{3}}{3}.
\frac{2x^{3}}{9}-\frac{5x^{4}}{16}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -\frac{5}{4} times \frac{x^{4}}{4}.
\frac{2}{9}\times 2^{3}-\frac{5}{16}\times 2^{4}-\left(\frac{2}{9}\times 0^{3}-\frac{5}{16}\times 0^{4}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{29}{9}
Simplify.