Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{y^{3}+3y^{3}}{16}\mathrm{d}y
Evaluate the indefinite integral first.
\int \frac{y^{3}}{16}\mathrm{d}y+\int \frac{3y^{3}}{16}\mathrm{d}y
Integrate the sum term by term.
\frac{\int y^{3}\mathrm{d}y+3\int y^{3}\mathrm{d}y}{16}
Factor out the constant in each of the terms.
\frac{y^{4}}{64}+\frac{3\int y^{3}\mathrm{d}y}{16}
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y^{3}\mathrm{d}y with \frac{y^{4}}{4}. Multiply \frac{1}{16} times \frac{y^{4}}{4}.
\frac{y^{4}+3y^{4}}{64}
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y^{3}\mathrm{d}y with \frac{y^{4}}{4}. Multiply \frac{3}{16} times \frac{y^{4}}{4}.
\frac{y^{4}}{16}
Simplify.
\frac{2^{4}}{16}-\frac{0^{4}}{16}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
1
Simplify.